ESTUDIO DEL SALADO DE “POTA” (DOSIDICUS GIGAS) Y CAMBIOS DE COLOR DURANTE SU ALMACENAMIENTO A 9 ºC Y 19 ºC

STUDIES ON SALTING OF GIANT SQUID (DOSIDICUS GIGAS) AND COLOR CHANGES DURING STORAGE AT 9 ºC AND 19 ºC

Maritza Barriga Alberto Salas Luis Chimpen
Dirección de Investigación, Instituto Tecnológico Pesquero del Perú.
Carretera a Ventanilla Km. 5,200 Callao, mbe@itp.org.pe

RESUMEN

Se estudiaron aspectos relacionados a la técnica de procesamiento más adecuada para el salado de calamar gigante o pota, las variaciones de color, durante su almacenamiento como producto envasado al vacío a 9 y 19 ºC, así como la evaluación del uso de bisulfito de sodio en inhibir dichos cambios.- La técnica más adecuada para el salado de calamar gigante es el método de salado en pila húmeda, debido a la uniformidad del proceso de salado, mayor velocidad en la penetración de sal y menores cambios en el color del producto durante el almacenamiento; así mismo, la aplicación de incisiones y agujeros no afectaron de manera significativa el proceso de penetración de sal. Los resultados obtenidos sugieren también que el bisulfito de sodio ejerce efectos sobre la reducción de la velocidad de los cambios enzimáticos evaluados mediante el cambio de color de las muestras. Los valores de vida útil calculados mediante la ecuación de Arrhenius fueron similares a los observados durante el estudio, puntualizando que la vida útil del producto salado alcanza los 90 días de almacenamiento a 15 ºC.
PALABRAS CLAVE: pota, Dosidicus gigas, salado pila seca, salado pila húmeda, color, vida útil, bisulfito de sodio

ABSTRACT

Aspects related to salting of giant squid or pota techniques were studied, color changes, during their storage in vacuum packaged at 9 and 19 ºC and the use of sodium bisulfite in order to inhibit these changes. The results indicated that the best technique for salting giant squid is the wet salting method, due to the uniformity of the process, faster speed in salt penetration and smaller changes in color of product during storage. Therefore the application of incisions and holes didn’t affect in a significant way the process of salt penetration. Results suggest that the sodium bisulfite reduce the speed of the enzymatic changes evaluated by variation of color in samples. Shelf life calculated using Arrhenius’s equation was similar to the result obtained during the study; Shelf life of product storage at 15 ºC was 90 days.
KEYWORDS: giant squid, Dosidicus gigas, dry salting, wet salting, colour, shelf life, sodium bisulfite

INTRODUCCIÓN

El calamar gigante o pota, Dosidicus gigas, es un molusco pelágico migratorio, cuyo desembarque en los últimos años ha significado un importante impacto económico para el sector pesquero peruano, al haber alcanzado capturas del orden de las
53.795 t el año 2000 \(^1\); 71.834 t en el 2001 \(^2\); 134.600 t en el 2002 \(^3\) y 127.992 t el año 2003\(^6\), que han sido procesadas y comercializadas bajo diferentes presentaciones para los mercados externo e interno.

Además de ser ampliamente utilizado por la industria pesquera congeladora como materia prima para la producción y exportación de filetes, tabletas, productos intermedios para “daruma” y recientemente en la producción de productos preparados congelados, como nuggets, hamburguesas e inclusive algunos enlatados, el calamar gigante ha sido usado por algunas empresas pesqueras artesanales para el procesamiento de un producto salado húmedo, tomando como modelo las técnicas desarrolladas para el salado de pescado que incluyen el método fuerte de salazón en pila húmeda y el envasado al vacío.

Sin embargo, con el uso de dicha técnica de procesamiento, se han observado problemas de calidad en este producto, que incluyen principalmente un cambio de coloración de blanco cremoso a ana- ranjado oscuro, cuando el filete de pota salado y empacado al vacío se almacena a temperaturas ambiente.

Se conoce que el músculo del manto contiene dos enzimas proteolíticas, que cortan las moléculas de miosina en fragmentos pequeños: la *meromiosina pesada* (HMM) y la *meromiosina ligera* (LMM), que precipitan las reacciones de pardeamiento enzimático y probablemente son las responsables del cambio de color en la pota salada, que resulta en un problema de calidad, según se ha anticipado (Kono y col. \(^10\)).

Concerniente con los cambios de coloración, Shirasaka y col. \(^15\) señalan que los cromatóforos en el calamar se encuentran distribuidos en la primera y segunda capa de la epidermis, que presentan coloraciones pardas y amarillas mientras el calamar está vivo. Al morir el animal, debido a la contracción que sufren los cromatóforos, se observan decoloraciones y la aparición de color blanquecino. Posteriormente, conforme se produce la pérdida de frescura, se observan coloraciones rojas en el manto, debido a que el pigmento se disuelve en el sarcoplasma, tornándose ligeramente alcalino. Para prevenir el enrojecimiento del calamar *Loligo vulgaris*, dichos autores recomiendan un pretratamiento con conservantes, acompañados de ácido acético para aclarar la carne.

De manera general, salvo el estudio experimental realizado por Ordoñez \(^9\), que incluyó el procesamiento de pota seca - salada, con especímenes pequeños y medianos, no se conoce de estudios sistemáticos sobre el procesamiento de pota salada - húmeda y, menos aún, estudios de penetración de sal o de uso de diferentes técnicas de salado. Se hace necesario revisar estos aspectos a fin de establecer la técnica de salazón más adecuada para este recurso, incluyendo la validez de practicar incisiones y agujeros, que son efectuados por los procesadores artesanales a fin de acelerar la penetración de sal, y evitar, sin éxito, el cambio de color del producto salado durante el almacenamiento.

Siendo conocida la acción del sulfuro de sodio para retardar el pardeamiento enzimático y no enzimático en vegetales, así como para evitar el oscurecimiento o “blackspot” en la caparazón de langostas y otros crustáceos, se postula la idea que este agente químico podría ser capaz de retardar los cambios de color en pota salada envasada al vacío.

El presente trabajo tiene como objetivo realizar el estudio de penetración de sal, en filetes de pota perforada y con incisiones bajo las técnicas de pila seca y pila húmeda; así como también evaluar el efecto del uso de bisulfito de sodio sobre los cambios de color en pota salada empacada al vacío durante el almacenamiento a temperatura ambiente.

MATERIAL Y MÉTODOS

Las muestras de pota, o calamar gigante, previamente evisceradas a bordo, fueron adquiridas al estado fresco en el Puerto de Paita; se transportaron en un camión con cámara isotérmica al Instituto Tecnológico Pesquero del Perú, Callao. La lon-
La longitud media del mantó fue 49.8 cm, y el peso promedio 4.6 kg, tamaño que corresponde a la clasificación de "grande" según Nessis (citado por Bravo). Presentaron composición química proximal (CPQ): humedad 86.18 %; proteína 12.45 %; grasa 0.5 % y cenizas 0.88 %.

Se utilizó el mantó, lavado, pelado y cortado en filetes de aproximadamente 22 x 6 cm; a los cuales se les practicaron cortes y agujeros, según los tratamientos abajo descritos. Los cortes lineales superficiales fueron realizados con un cuchillo cada 2 cm a lo largo de la pieza de pota y los agujeros fueron realizados mediante punición emplazando un accesorio tipo cepillo de acero inoxidable con puntas.

Las muestras fueron sometidas a un proceso de salado bajo seis tratamientos, efectuados por triplicado (Tabla 1):

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>Salado en pila húmeda (testigo)</td>
</tr>
<tr>
<td>HA</td>
<td>Salado en pila húmeda (muestras con agujeros)</td>
</tr>
<tr>
<td>HL</td>
<td>Salado en pila húmeda (muestras con incisiones)</td>
</tr>
<tr>
<td>S</td>
<td>Salado en pila seca (testigo)</td>
</tr>
<tr>
<td>SA</td>
<td>Salado en pila seca (muestras con agujeros)</td>
</tr>
<tr>
<td>SL</td>
<td>Salado en pila seca (muestras con incisiones)</td>
</tr>
</tbody>
</table>

Salado y penetración de sal. Se utilizó sal de grano tipo Pesca (grado # 2). Los filetes de pota fueron colocados en capas en forma alternada con sal al 35%, dentro de cajas plásticas de 70 L de capacidad, que, sólo para el caso de salado en pila seca, fueron perforadas en sus esquinas a fin de permitir el drenaje de la salmuera natural formada. La penetración de sal fue evaluada durante 120 horas a temperatura ambiente (20 ºC), mediante la evolución en el contenido de cloruros (AOAC12) y humedad (FAO14), efectuados a las 0, 4, 10, 24, 48, 72, 96 y 120 horas. Concluido el tiempo de salado las muestras fueron envasadas al vacío (1 kg ± 50 g) empleando bolsas laminadas de nylon/poliethileno (Ny/PE) y fueron almacenadas a 19 ºC y a 9 ºC.

Evaluación de color. Se realizaron mediciones de color en las muestras almacenadas a 19 ºC y 9 ºC, a los 13, 23, 32, 45 y 60 días, utilizando un colorímetro de marca Nippon Deneshoku Industries Co. Ltd. Tokio, Japón, modelo ZE-2000 con fuente de luz D 65/10. Estos datos fueron correlacionados con los resultados de la evaluación sensorial obtenidos al aplicar la calificación descriptiva que se muestra en la Tabla 2. Las tonalidades amarillas fueron cuantificadas por los valores "b" y las rojizas por valores "a"; el aumento de valores "b" y "a" indica mayor intensidad en las tonalidades, la claridad fue cuantificada por L, siendo los valores menores indicadores de tonos oscuros.

<table>
<thead>
<tr>
<th>Calidad</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muy Buena (MB)</td>
<td>- Olor característico de la especie - Textura muy elástica. - Color blanco - Olor característico de la especie</td>
</tr>
<tr>
<td>Bueno (B)</td>
<td>- Textura muy elástica - Color crema muy claro - Olor característico de la especie - Textura muy elástica</td>
</tr>
<tr>
<td>Regular (R)</td>
<td>- Color anaranjado muy tenue - Presencia de pequeña cantidad de exudado - Olor abombado - Textura poco elástica</td>
</tr>
<tr>
<td>Malo (M)</td>
<td>- Color anaranjado. - Excesivo exudado.</td>
</tr>
</tbody>
</table>

Aplicación de bisulfito de sodio. Esta prueba fue realizada en las muestras de pota salada sometida al tratamiento que obtuvo mejores resultados en la etapa previa. Para este efecto, después de la cuarta hora de iniciado el proceso de salazón del calamar gigante, a la salmuera natural formada se le agregó 50 mL de una solución de bisulfito de sodio de 0.5 g por kg de pota en la caja de salado. A este tratamiento se le denominó "Bii." Después de 48 horas, completado el proceso de penetración de sal, las muestras fueron drenadas utilizando una mala
plástica con aberturas de 2 mm, y luego envasadas al vacío en bolsas laminadas de Ny / PE de 1 kg de capacidad. El almacenamiento se realizó a temperaturas de 15 ºC, 25 ºC y 30 ºC. Paralelamente se consideró un tratamiento testigo (T). Para la evaluación del tratamiento, se realizó la determinación de los valores a, b y L frente a la relación de ARRHENIUS, empleada por LABUZA (1982) para modelos cinéticos, a los 0, 7, 14, 28, 43, 60 y 90 días de almacenamiento.

Evaluación estadística.- Se aplicó ANVA y se realizó la prueba de Tukey, en los valores obtenidos en la prueba de penetración de sal y de evaluaciones de color. Se empleó el programa SPSS versión 10 para Windows.

RESULTADOS Y DISCUSIÓN

Evaluación de la penetración de la sal

A las 48 horas después de iniciado el proceso de salado, la mayoría de las muestras de los tratamientos presentaron alrededor de 16% de cloruros, excepto en la muestra de HA, que mostró una ligera mayor eficiencia en la velocidad de penetración de sal (Tabla 3). Aunque hasta las 120 horas de salazón, el análisis estadístico en los seis tratamientos no mostró diferencias significativas en los contenidos de cloruro de sodio y humedad entre ellos, la tendencia hacia una ligera mayor eficiencia recaía sobre el tratamiento HA, al haber alcanzado valores mayores al 20% desde las 96 horas de salazón.

De manera general, se puede afirmar que los niveles de cloruros de los tratamientos H, HA y HL presentaron valores ligeramente mayores que los tratamientos en pila seca, así como también una menor desviación estándar; atribuyendo esta diferencia a que mediante el método de pila húmeda se da un mejor contacto entre el medio salino y el sustrato.

Así mismo, en cuanto a la humedad, los valores en los tratamientos de pila húmeda fueron ligeramente mayores a los tratamientos en pila seca, en especial al final del estudio, debido probablemente al fenómeno de deshidratación que sufren las muestras a las que se drena la salmuer- ra natural formada.

Evaluación sensorial y medida del color durante el almacenamiento

En la Tabla 4 se pueden observar los valores L, a y b de las muestras almacenadas a temperaturas de 9 ºC y 19 ºC.

<table>
<thead>
<tr>
<th>Tiempo (horas)</th>
<th>H</th>
<th>HA</th>
<th>HL</th>
<th>S</th>
<th>SA</th>
<th>SL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloruros</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6,83 ± 0,4</td>
<td>7,2 ± 0,90</td>
<td>8,1 ± 0,5</td>
<td>9,2 ± 0,7</td>
<td>8,82 ± 0,5</td>
<td>9,5 ± 0,9</td>
</tr>
<tr>
<td>10</td>
<td>9,65 ± 0,9</td>
<td>10,2 ± 0,51</td>
<td>10,8 ± 0,4</td>
<td>9,9 ± 0,6</td>
<td>10,5 ± 0,7</td>
<td>11,1 ± 0,3</td>
</tr>
<tr>
<td>24</td>
<td>12,4 ± 0,5</td>
<td>13,0 ± 0,51</td>
<td>13,4 ± 0,9</td>
<td>12,5 ± 0,8</td>
<td>11,9 ± 0,9</td>
<td>12,7 ± 0,9</td>
</tr>
<tr>
<td>48</td>
<td>16,4 ± 0,5</td>
<td>17,1 ± 1,29</td>
<td>16,3 ± 0,9</td>
<td>16,4 ± 1,3</td>
<td>15,5 ± 0,5</td>
<td>16,2 ± 0,9</td>
</tr>
<tr>
<td>72</td>
<td>19,3 ± 0,6</td>
<td>18,5 ± 0,34</td>
<td>18,0 ± 0,9</td>
<td>16,8 ± 2,0</td>
<td>18,1 ± 2,9</td>
<td>17,7 ± 1,2</td>
</tr>
<tr>
<td>96</td>
<td>18,9 ± 1,2</td>
<td>20,3 ± 0,68</td>
<td>19,8 ± 0,4</td>
<td>17,5 ± 2,9</td>
<td>18,3 ± 1,0</td>
<td>18,7 ± 0,9</td>
</tr>
<tr>
<td>120</td>
<td>20,7 ± 0,1</td>
<td>20,9 ± 0,85</td>
<td>20,4 ± 0,3</td>
<td>20,3 ± 0,6</td>
<td>19,4 ± 0,8</td>
<td>18,6 ± 2,0</td>
</tr>
<tr>
<td>Humedad</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>79,28 ± 0,9</td>
<td>77,82 ± 1,2</td>
<td>78,87 ± 1,2</td>
<td>78,82 ± 1,2</td>
<td>75,69 ± 0,3</td>
<td>76,52 ± 0,7</td>
</tr>
<tr>
<td>10</td>
<td>74,71 ± 0,9</td>
<td>73,78 ± 0,2</td>
<td>74,72 ± 0,4</td>
<td>73,31 ± 2,2</td>
<td>74,69 ± 0,9</td>
<td>74,71 ± 0,4</td>
</tr>
<tr>
<td>24</td>
<td>73,34 ± 0,2</td>
<td>71,65 ± 0,9</td>
<td>73,76 ± 0,7</td>
<td>74,35 ± 4,8</td>
<td>72,28 ± 1,1</td>
<td>71,44 ± 2,0</td>
</tr>
<tr>
<td>48</td>
<td>69,18 ± 0,3</td>
<td>68,87 ± 1,2</td>
<td>69,24 ± 1,1</td>
<td>68,34 ± 2,9</td>
<td>66,76 ± 0,6</td>
<td>69,19 ± 1,7</td>
</tr>
<tr>
<td>72</td>
<td>65,50 ± 1,1</td>
<td>67,00 ± 1,2</td>
<td>66,87 ± 1,1</td>
<td>66,15 ± 2,8</td>
<td>65,55 ± 1,7</td>
<td>64,24 ± 2,3</td>
</tr>
<tr>
<td>96</td>
<td>64,47 ± 0,7</td>
<td>65,61 ± 1,7</td>
<td>65,72 ± 0,0</td>
<td>67,44 ± 3,6</td>
<td>64,13 ± 1,9</td>
<td>65,31 ± 1,6</td>
</tr>
<tr>
<td>120</td>
<td>64,41 ± 0,4</td>
<td>64,56 ± 0,8</td>
<td>64,52 ± 0,3</td>
<td>62,5 ± 1,2</td>
<td>60,28 ± 2,9</td>
<td>62,63 ± 0,8</td>
</tr>
<tr>
<td></td>
<td>9 ºC</td>
<td></td>
<td></td>
<td>19 ºC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiempo (días)</td>
<td>L</td>
<td>a</td>
<td>b</td>
<td>L</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>0</td>
<td>70,11</td>
<td>-2,55</td>
<td>4,27</td>
<td>70,21</td>
<td>-2,44</td>
<td>3,15</td>
</tr>
<tr>
<td>13</td>
<td>70,97</td>
<td>-2,16</td>
<td>6,34</td>
<td>71,56</td>
<td>-2,56</td>
<td>5,11</td>
</tr>
<tr>
<td>23</td>
<td>70,67</td>
<td>-2,75</td>
<td>4,07</td>
<td>70,34</td>
<td>-2,09</td>
<td>5,83</td>
</tr>
<tr>
<td>32</td>
<td>70,98</td>
<td>-2,58</td>
<td>5,47</td>
<td>70,94</td>
<td>-2,13</td>
<td>6,93</td>
</tr>
<tr>
<td>45</td>
<td>70,00</td>
<td>-2,01</td>
<td>7,80</td>
<td>71,67</td>
<td>-1,88</td>
<td>7,92</td>
</tr>
<tr>
<td>60</td>
<td>71,00</td>
<td>-0,50</td>
<td>9,00</td>
<td>70,00</td>
<td>-1,05</td>
<td>8,00</td>
</tr>
</tbody>
</table>

Tabla 4.- Valores L, a y b en pola salada almacenada a 9 ºC y 19 ºC.
Almacenamiento a 9 ºC.- Todas las muestras saladas en pila húmeda, mantuvieron las condiciones iniciales de textura, olor característico y color blanco hasta los 23 días, siendo calificadas sensorialmente como MB. Con respecto a los rangos de lectura de color, estos fueron: valores L = 68,93 a 70,67; los valores "b" = 4,07 a 5,83; y los valores de "a" = -2,09 a -2,75.

Bajo esta misma temperatura de almacenamiento, las muestras saladas en pila seca presentaron a los 13 días cambios ligeros en las tonalidades de color crema, percibidos por el colorímetro como: valores L = 71,22 hasta 72,42; "b" = 6,04 hasta 8,84; y "a" = -1,49 a -2,2. Obtuvieron la calificación sensorial B.

En estas condiciones de almacenamiento, hasta el final del estudio, las muestras saladas, tanto en pila húmeda como en pila seca, se mantuvieron con pocas variaciones y merecieron el calificativo B.

Almacenamiento a 19 ºC.- Para todos los casos y en comparación con las muestras mantenidas a 9 ºC, se obtuvieron menores valores para L y mayores los valores de a y b. Se observó, además, tonalidades de color crema más oscuras, que fueron cambiando a tonos rosáceos y descritos por el panel como "de color anaranjado". A los 13 días, todas las muestras fueron calificadas como B; con valores L = 69,06 hasta 72,87; valores b = 7,36 hasta 10,24 y valores a = -0,66 hasta -2,2.

Posteriormente, a los 32 días, las muestras saladas en pila seca presentaron coloraciones anaranjadas tenues; lo cual, sumado a la presencia de pequeñas cantidades de exudado, determinó la calificación de R, que correspondió a los rangos de lecturas L = 66,48 a 68,36; b = 13,89 a 14,80 y a = de 0,6 a 1,29.

A los 60 días de evaluación, las muestras de los tratamientos salados por pila seca al ambiente presentaron olor desagradable, color anaranjado más intenso y un excesivo exudado en la muestra. Fueron calificadas como calidad M, con los valores de: L = 60,80 a 64,20; b = 18,0 a 18,4; y a = 3,5 y 3,88.

En la Tabla 5 se resume lo descrito anteriormente, correlacionando la evaluación sensorial descriptiva con los valores objetivos obtenidos mediante medición de color. Se observa que el valor “b” permite mayor correlación con los cambios de color que “a” y L; este último arroja similares valores para diferentes calidades del producto.

<table>
<thead>
<tr>
<th>Calidad</th>
<th>Descripción</th>
<th>b</th>
<th>a</th>
<th>Lecturas</th>
</tr>
</thead>
</table>
| Muy Bueno (MB) | • Olor característico de la especie
• Textura muy elástica.
• Color blanco | 1 a < 6 | -3,0 a -2,3 | 64 a 71 |
| Bueno (B) | • Olor característico de la especie
• Textura muy elástica.
• Color crema muy claro. | 6 a 11 | -2,2 a -0,7 | 64 a 71 |
| Regular (R) | • Olor característico de la especie
• Textura muy elástica.
• Color anaranjado muy tenue.
• Presencia de pequeña cantidad de líquido desaladoado (sinéresis). | >11 a < 18 | -2,2 a 2,0 | 64 a 68 |
| Malo (M) | • Olor amibaro.
• Textura poco elástica.
• Color anaranjado.
• Excesiva sinéresis | 18 a 20 | ≥2,0 | 57 a 64 |

El análisis estadístico de los valores de medición de color de las muestras bajo ambas condiciones de almacenamiento, permite apreciar que a los 60 días presentaron diferencias significativas de HA respecto a los otros tratamientos; los menores valores correspondieron a las lecturas en “b” y “a”; no ocurrió lo mismo en los valores L.
De manera general, se observó que los valores “b” y “a” de las muestras se incrementaron en función del tiempo, lo cual podría deberse al efecto de la actividad enzimática proteolítica en el producto. Según Ayensa, la proteólisis se presenta en un amplio rango de temperaturas (0 hasta 85 °C); sin embargo, esta actividad es también apreciable a bajas temperaturas; por otra parte, Konno y col. registraron un incremento en la velocidad de autólisis de la pota a los 40 °C.

Evaluación del uso de bisulfito de sodio.
Vida útil

Esta evaluación se realizó en las muestras de pota con agujeros, saladas en pila húmeda y envasadas al vacío (HA). Al analizar los resultados (Tabla 6 y Figura 1), a temperaturas de 15 °C, se observó la influencia del tratamiento con bisulfito de sodio sobre las muestras testigo, coadyuvado por el efecto de la temperatura de almacenamiento. Las muestras tratadas y las testigo obtuvieron el calificativo MB hasta los 60 y 45 días respectivamente; las primeras presentaron menores cambios hasta los 90 días, en que obtuvieron la calificación B. Es importante observar que en las muestras testigo se produjo un cambio relativamente rápido, relacionado con los cambios en las tonalidades de crema claro hacia naranja claro; pues a los 60 días fueron consideradas B y al término de los 90 días fueron sólo aceptables R.

A mayores temperaturas de almacenamiento, se pudo apreciar que los cambios en la coloración eran más definidos. Así, en las pruebas realizadas a 25 °C los resultados para ambos grupos de muestras fueron similares sólo hasta los 21 días; luego a los 28 y 45 días las muestras tratadas fueron calificadas como B, disminuyendo su calidad al límite de aceptación a los 60 y 90 días. Este comportamiento fue más evidente en las muestras testigo, que a los 28 días eran consideradas sólo aceptables disminuyendo notoriamente a los 60 días (M).

A 30 °C, la calificación de las muestras tratadas con bisulfito de sodio, se mantuvieron como aceptables hasta los 90 días, superando la correspondiente a las muestras testigo (28 días).

| Tabla 6- Calificación, en días, de la pota salada considerando las equivalencias de b y Tabla 1 |
|------------------------|--------|--------|--------|--------|--------|--------|--------|
| Tratamiento | 0d | 7d | 14d | 21d | 28d | 45d | 60d | 90d |
| 15 | Bi15 | MB | MB | MB | MB | MB | MB | B |
| T15 | MB | MB | MB | MB | MB | B | R |
| 25 | Bi25 | MB | MB | MB | B | B | R | R |
| T25 | MB | MB | MB | B | R | R | M | M |
| 30 | Bi30 | MB | MB | MB | B | R | R | R |
| T30 | MB | MB | MB | B | R | M | M |

Los resultados obtenidos sugieren que el efecto del bisulfito es adecuado para reducir la velocidad de cambios enzimáticos.

Al evaluar a, b y L en el modelo de Arrhenius se observó que los valores a fueron negativos y positivos, y no presentaban correlación con la evaluación sensorial (Tabla 5), además que matemáticamente no se ajustaban a representaciones de orden cero, ni de primer orden que son las utilizadas en este modelo. A diferencia de lo anterior, los valores b (Tabla 7) fueron positivos y al ser utilizados en el modelo, sí demostraron correspondencia con la evaluación sensorial, mostrando estrecha relación con los cambios en el rango de tonalidades amarillas, que son mejor cuantificadas por este valor en estados de calidad MB, B y R, a diferencia de los valores a que sólo guardan correspondencia cuando la calificación del producto disminuye notoriamente (Tabla 5). En cuanto a los valores L, no mostraron ninguna relación con la evaluación sensorial.
Comparando la vida útil calculada mediante \textit{Arrhenius} y la observada de los resultados obtenidos en el presente estudio (Tabla 8), existieron diferencias de 4 a 10 días; a excepción de las muestras con Bi a 25°C, que fueron iguales; esta diferencia puede ser debida a que la estimación de la vida útil por la ecuación de \textit{Arrhenius} es puntual, para cada valor de temperatura, pero realmente existen fluctuaciones en el almacenamiento de +/- 1.0°C.

En cuanto al contenido final de bisulfito de sodio en los filetes de pota salada, estos estuvieron en el rango de 50 a 80 ppm de SO₂, cantidades permitidas por la FAO Y OMS 16.

Tabla 7: Resultados de la prueba ANOVA de los valores b a 15°C, 25°C, y 30°C, durante 90 días.

<table>
<thead>
<tr>
<th>T (°C)</th>
<th>Valores b</th>
<th>7d</th>
<th>14d</th>
<th>21d</th>
<th>28d</th>
<th>45d</th>
<th>60d</th>
<th>90d</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 Bi 15</td>
<td>1.5 ± 0.1</td>
<td>1.5 ± 0.3</td>
<td>1.9 ± 0.3</td>
<td>3.67 ± 1.0</td>
<td>5.7 ± 1.4</td>
<td>5.8 ± 0.2*</td>
<td>8.4 ± 0.8*</td>
<td></td>
</tr>
<tr>
<td>T 15</td>
<td>1.5 ± 0.1</td>
<td>1.5 ± 0.7</td>
<td>2.4 ± 0.2</td>
<td>3.46 ± 0.9</td>
<td>5.3 ± 1.7</td>
<td>6.9 ± 1.0*</td>
<td>11.5 ± 0.5*</td>
<td></td>
</tr>
<tr>
<td>25 Bi 25</td>
<td>2.5 ± 0.4</td>
<td>5.3 ± 3.3*</td>
<td>7.7 ± 0.1*</td>
<td>8.4 ± 0.7*</td>
<td>11.2 ± 0.3*</td>
<td>14.6 ± 0.7*</td>
<td>15.8 ± 0.4*</td>
<td></td>
</tr>
<tr>
<td>T 25</td>
<td>2.6 ± 0.1</td>
<td>5.8 ± 0.1*</td>
<td>8.7 ± 0.5*</td>
<td>11.5 ± 0.8*</td>
<td>16.5 ± 0.8*</td>
<td>18.3 ± 0.4*</td>
<td>18.5 ± 0.5*</td>
<td></td>
</tr>
<tr>
<td>30 Bi 30</td>
<td>4.1 ± 0.6</td>
<td>8.3 ± 0.5</td>
<td>11.2 ± 0.2*</td>
<td>11.4 ± 0.6*</td>
<td>16.2 ± 0.7*</td>
<td>16.8 ± 0.6*</td>
<td>17.4 ± 0.4*</td>
<td></td>
</tr>
<tr>
<td>T 30</td>
<td>4.6 ± 1.0</td>
<td>10.4 ± 0.3</td>
<td>13.4 ± 0.8*</td>
<td>15.5 ± 0.6*</td>
<td>18.5 ± 1.0*</td>
<td>19.4 ± 0.7*</td>
<td>19.0 ± 0.1*</td>
<td></td>
</tr>
</tbody>
</table>

El dato inicial fue de b = 1.5.

(*) Existe diferencia significativa ≤0.5 para cada tiempo y temperatura.

Los promedios que no tienen (*) no presenían diferencia significativa para cada tiempo y temperatura.

Tabla 8: Vida útil en días, de la pota salada con bisulfito.

<table>
<thead>
<tr>
<th>T °C</th>
<th>Calculada¹</th>
<th>Observada²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Muestra con Bisulfito</td>
<td>Muestra Testigo</td>
</tr>
<tr>
<td>15</td>
<td>94</td>
<td>65</td>
</tr>
<tr>
<td>25</td>
<td>45</td>
<td>31</td>
</tr>
<tr>
<td>30</td>
<td>29</td>
<td>21</td>
</tr>
</tbody>
</table>

¹ = cálculo en base a la ecuación de Arrhenius aplicado a los valores de b,
² = evaluación sensorial (se considera vida útil hasta la última calificación B)
CONCLUSIONES

1. La aplicación de incisiones y agujeros no afectaron de manera significativa el proceso de penetración de sal.
2. Los tratamientos de pila húmeda presentaron contenidos de cloruro de sodio mayores que los tratamientos en pila seca, así como una menor desviación estándar. Los tratamientos H llegaron a contenidos mayores de 16% a las 48 horas de iniciado el proceso de salado.
3. Los cambios de color son debido a la actividad enzimática, estando relacionados con la temperatura, esto se reflejó en las muestras de pota salada almacenadas a 19 °C las cuales mostraron mayores variaciones de color que las muestras almacenadas a 9 °C.
4. De los valores L, a y b, el valor b presenta mayor correlación con la evaluación sensorial.
5. Las muestras HA, respecto a las otras muestras, presentaron menores valores de b, y a en función al tiempo.
6. Las muestras tratadas con bisulfito y almacenadas a 15 °C, 25 °C y 30 °C al ser evaluadas con la tabla sensorial obtuvieron la vida útil de 90, 45 y 21 días, respectivamente, tiempos similares resultaron al aplicar la ecuación de ARRHENIUS a los valores b (94, 45 y 29 días respectivamente).

REFERENCIAS

5. Bravo V. 2001. Desarrollo de una tabla de evaluación por análisis sensorial del calamar gigante o pota (Dosidicus gigas). Tesis para optar el título de Médico veterinario. Universidad Nacional Mayor de San Marcos